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Invariances in Deep Learning



Symmetries in Deep Learning

Embedding symmetries into architectures leads to better models!

(a) Convolutions embed
translation equivariance. *

★G

(b) Can be extended to other groups,
such as rotation.

Symmetries need to be chosen or selected with cross-validation.

Can we learn the right invariances with gradients?

* Animation by: Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic
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Constructing an invariant neural network

pool / 
average

Invariant
prediction

layer 2layer 1transform

featuresaugmented data predictions

Consider a shallow network

gθ(T(x)) = σ(W2 ◦ ϕ(W1 ◦ T ◦ x))

integrated over a set of transformations

fθ(x;η) =
∫
gθ(T(x))pη(T)dT

We can apply transformations to the input or the weights first:

W1 ◦ (T ◦ x) = (W1 ◦ T) ◦ x
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Parameterizing invariance

General parameterization of invariance

T = exp

(∑
i

ϵiηiGi

)
, ϵ ∼ U[−1, 1]k

use set of affine generators

G1 : translation x
G2 : translation y
G3 : rotation

G4 : scale x
G5 : scale y
G6 : shear
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Stochastic or deterministic sampling

The invariant predictor is described by an integral, which is
intractable.

However, we can predict with an approximation from MC samples:

f̂θ(x;η) =
1
S

S∑
i=1

gθ(Ti(x))

to get an unbiased estimate

fθ(x;η) = ET
[̂
fθ(x;η)

]
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Bayesian Model Selection (Murphy §5.3, MacKay §28, Bishop §3.4)

Normally, we would use cross-validation to learn hyperparameters.

Finding optimal hyper-parameters η with Bayesian model selection

p(θ,η|D) =
p(D|θ,η)p(θ|η)p(η)

p(D|η)
(Full Bayes)

η̂ = argmax
η

∫
p(D|θ,η)p(θ|η)dθ (Empirical Bayes)

Well known procedure (Empirical Bayes, Type-II ML).
Used to learning invariances in GPs [van der Wilk; 2018].
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Variational Inference

Marginal likelihood is intractable for neural networks.

We derive a lower bound using multi-sample Jensen’s inequality:

log p(D) ≥ Eq(θ)
[
E∏N

i=1 pη(Ti)

[
log p(y|̂fη(x,η))

]]
− KL(q(θ|µ,Σ)||p(θ))

Similar to Nabarro et al., 2022 and Schwöbel et al., 2022.
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Results



Learning affine invariances

Figure 1: Visualisation of filter banks trained on rotated CIFAR-10 data.

(a) Trained on regular MNIST. (b) Trained on rotated MNIST.

(c) Trained on scaled MNIST. (d) Trained on translated MNIST.

Figure 2: The same model capable of learning affine invariances learns filter
banks with different invariances corresponding the data it was trained on.
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Learned invariant filter banks
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Recovering invariances

Relaxed invariance is not limited by the ’closure’ axiom of groups.

We can learn the right amount of invariance from training data.
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The necessity of the Bayesian approach

The marginal likelihood balances data fit and model complexity.

±

±

±

±

±

This proves to be very useful beyond predictive uncertainty.
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Conclusion



Conclusion

We can learn invariant weights from data!
But, only in shallow networks

Exciting work in progress...

• Scaling the objective to deep networks
“Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations”,

A Immer, TFA van der Ouderaa, V Fortuin, G Rätsch, M van der Wilk (2022)

• Parameterization of learnable layer-wise equivariance
“Relaxing Equivariance Constraints with Non-stationary Continuous Filters”,

TFA van der Ouderaa, M van der Wilk (2022)

Very happy to engage in discussions on the topic!
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Follow on @tychovdo

Come chat at our poster ID# 419
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