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Symmetries in Deep Learning



Symmetries in neural networks

Embedding symmetries into architectures leads to better models!

(a) Convolutions embed
translation equivariance. *

★G

(b) Can be extended to other groups,
such as rotation.

Symmetries need to be chosen or selected with cross-validation.

Can we learn the right equivariances with gradients?

* Animation by: Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic
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Part-whole hierarchies

Approximate equivariance exchanges information from place-coded
to rate-coded features (relates to capsule networks).

Learning layer-wise equivariances is about determining the right
amount of disentanglement in part-whole hierarchies.
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Why symmetry learning is hard

Learning symmetries is hard...

• Objective Equivariances constrain functions a neural net can
represent. Consequently, optimising data fit does not encourage
the use of symmetry.

• Parameterisation It is not clear how to parameterise
differentiable symmetry constraints effectively.

We tackle both issues.
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Differentiable Equivariance



Equivariant subspace

To obtain differentiable equivariance constraints, we relax
layer-wise equivariances. Starting from a linear layer:∑

c

∑
x,y
x(c, x, y)θ(c′, c, x′, y′, x, y)︸ ︷︷ ︸
fully−connectedFC

(generalises to groups in paper)

for discrete spaces this is a classic FC layer y = Wx, with W = vec(θ).
We separately parameterise the equivariant subspace:

y(c′, x′, y′) =
∑
c

∑
x,y
x(c, x, y)θ(c′, c, x′, y′, x, y)︸ ︷︷ ︸
fully-connected FC

+
∑
c

∑
x,y
x(c, x, y)θ̄(c′, c, x̄, ȳ)︸ ︷︷ ︸
equivariant CONV

Non-stationary θ and convolutional filter θ̄(c′, c, x̄, ȳ) with stationary
(x̄, ȳ) = (x′ − x, y′ − y). Similar to ‘residual pathways’ [Finzi et al., 2021].
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Factorising layers

Relaxed equivariance can be hard to parameterise in a reasonable
parameter count, especially for larger group sizes |G|.

Some that scale to (image size) translation groups:
• Non-stationary filters [van der Ouderaa et al., 2022]
• Residual pathways [Finzi et al., 2021a] (C2S4)

Factorisation simple trick to reduce C2S4 → 2C2S2:
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Spatial sparsification

Further, reduce spatial dimension in a small set of P basis functions

C2S2 → C2P

Casts symmetry discovery as automatic relevance determination.

Shown effective on groups with b-splines [Bekkers, 2019] and
exponential basis features [van der Ouderaa and van der Wilk, 2023].
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Equivariance as controllable soft constraint

To automatically learn equivariance in each layer l, we interpolate
non-equivariant/equivariant solutions with η = {σ2l }Ll=1:

σ2l = 0 =⇒ strict equivariance σ2l > 0 =⇒ relaxed equivariance

To satisfy this, we may consider:

residual pathway prior: N (θ|0, σ2l )︸ ︷︷ ︸
Finzi et al., 2021

non-stationary filter: N (ω2l |0, σ2l )︸ ︷︷ ︸
van der Ouderaa et al., 2023

We consider both. Instead of setting or tuning prior variances that
control equivariance constraints, we propose to infer the amount of
equivariance from train data with approximate empirical Bayes.
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Objective to learn symmetry
constraints



Inspired by the marginal likelihood

Inspired by optimising marginal likelihood: (Type-II ML)

p(D|η) =
∫
θ

p(D|θ,η)p(θ)dθ

Estimate with modern linearised Laplace approximations (KFAC Hθ∗ )

p(D|η) ≈ − log p(D|θ∗,η)︸ ︷︷ ︸
NLL / Data fit

− log p(θ∗)− P
2 log(2π) +

1
2 log |Hθ∗ |︸ ︷︷ ︸

Occam’s factor

Effectively, we optimize equivariance constraints of the architecture
that yield wide minima in the loss landscape.

Proven effective for invariance learning in [Immer, et. al, 2022]
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Results



Toy problem

Problems engineered such that strict symmetry constraints are
either good or bad.

Our method capable of learning symmetry performs well on both.
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Learning to become convolutional

On CIFAR-10 classification, we train a network with flexible layers that
can automatically adapt symmetry constraints:

Most layers learn to become convolutional, but in last layers it
learns to break symmetry. This is analogous to many successful
hand-engineered architectures. 11



Multiple symmetry groups

Automatic relevance determination between multiple groups.

Learning symmetry improves final test performance.
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Conclusion



ELLA: Equivariance Learning with Laplace Approximations

ELLA for automatic discovery of layer-wise equivariances from data.

• Differentiable objective that can learn symmetry constraints
• Scalable parameterisation of flexible layer-wise equivariance

Demonstrated the principle of learning layer-wise equivariances.

Come visit our poster ID: 71150

Or check out:
• Paper: NeurIPS 2023 (Awarded with spotlight)
• Code: https://github.com/tychovdo/ella
• Twitter/X: @tychovdo, @a1mmer, @markvanderwilk
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Be sure to come by our poster!
- ID 71150 -
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