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A general framework for pruning large neural models

Structured pruning Unstructured pruning



Pruning of large neural models
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Any structure type Novelty

● Uses gradient info. Removal cost 

and updates in terms of final loss.

● Modern Hessian approximations

● Scalable to LLMs

● First to achieve 20-30% structured (!) LLM pruning with performance loss.

● Also state-of-the-art results in unstructured and semi-structured pruning.

Growing interest in structured LLM pruning. Notably, concurrent work by ETH Zurich / Microsoft Research AI:
Ashkboos, Saleh, et al. "Slicegpt: Compress large language models by deleting rows and columns." (2024)



A tale of pruning in the loss surface

Alps view from Matterhorn Glacier Paradise. (source: Wikipedia)
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A tale of pruning in the loss surface



Geometric view on pruning
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Geometric view on pruning
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(LeCun et al., 1989)
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Solve the following quadratic constraint optimization problem (OBS: Hassibi & Stork, 1992)

General solution (in LLM context: Kurtic et al. (2022))

Closed-form constraint optimization
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One slide on the probabilistic perspective…

● We perform a Laplace approximation of the likelihood or posterior.
● Good pruning is all about correlations! Avoid the mean-field assumption.

Actually loss is regularised:  -log p(D | θ) + log p(θ)  by a log prior.
Prior variance plays critical role in implementation as `damping' term.
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Curse of squaring a large number

The Hessian of a 13 billion parameter LLM contains 1.69 × 10^20 elements!

Waaaayyy to big…

13b x 13b Hessian
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Total # of correlations
(13 billion)^2 =

(13*10^9)^2 = 1.69*10^20
= 169 exabytes (comes after giga, 

tera, peta)
Wayyy too big…



Kronecker-factors

Nice way to write factorisations/decompositions for tensors.

Very natural operation, and broadcasted multiplication under a reshuffling:

(A.view(3, 1, 3, 1) * B.view(1, 4, 1, 4)).view(12, 12)

Often pops up in factorisations/decompositions of tensors. Keeps math clean.
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Modern Hessian approximations

The Hessian of a 13 billion parameter LLM contains 1.69e+20 elements!

Waaaayyy to big…

A₁⊗G₁ A₁⊗G₂ A₁⊗G₃

A₂⊗G₁ A₂⊗G₂ A₂⊗G₃

A₃⊗G₁ A₃⊗G₂ A₃⊗G₃

Note: No approximations yet!
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What often happens in prior work

A₁⊗ I 0 0

0 A₂⊗ I 0

0 0 A₃⊗ I

Most pruning works ignore `layer-wise' interactions, BUT make it completely `local'.

Very cheap.

No gradient info.

Ignores final loss.

(equivalent to summing

local squared losses

on output of each layer)
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Modern Hessian approximations

Still quite big…

A₁⊗G₁

A₂⊗G₂

A₃⊗G₃

0 0

0 0

0 0
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Interactions per layer
R=C=1000

1000^4 bytes = 1TB
Still too big…



Assume independent input and outputs (KFAC: Martens & Grosse, 2015)

Implementation using hooks:

During all fwd and bwd passes,  maintain aggregates of activations (aaᵀ) and gradients (ggᵀ). 

Aggregates can be moved to ram, if needed.

Still quite big… Great!
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Modern Hessian approximations

Interactions per layer
R=C=1000

2 x (1000^2) bits = 2MB
Awesome!(RC x RC) (R x R) (C x C)

Great!



13b x 13b Hessian

13 billio
n

Modern Hessian approximations
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Solve the following quadratic constraint optimization problem (OBS: Hassibi & Stork, 1992)

General solution (in LLM context: Kurtic et al. (2022))

Constraint optimization problem

Paper provides derivations for all structures {unstructured, semi-structured, structured} 20



Algorithm outline for structured pruning

1. Compute removal cost for each row and column

2. Global thresholding by sorting all costs and selecting op X% for removal

3. Update remaining weights using correlated weight updates

4. Repeat for multiple shots

(among new results)

Can be efficiently implemented by indexing rows/cols.

Scales not in #elements anymore, but only in #rows and #columns!
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Scales not in #elements anymore, but only in #rows and #columns!



Pseudo code

Optionally, can be interleaved with first-order LoRA corrections.
Useful trick: absorb in between to allow
increase rank of sum of LoRA updates!
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Results

Structured pruning Unstructured pruning

Interpolate model sizes
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Results
Quantitative benchmark

Similar findings for performance on downstream tasks! 24



Results
Task-specific compression

Can be used to project existing pretrained models to tailored smaller model.
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Results
Analysing sparsification
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Beyond independent inputs and outputs
Nearest Kronecker product with Kronecker power iteration
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