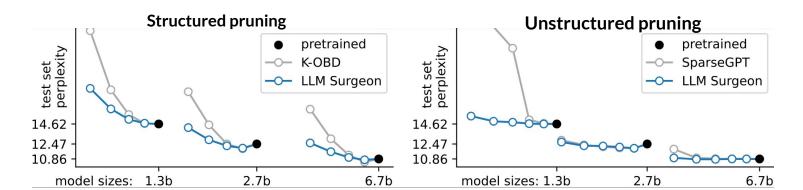


# The LLM Surgeon

#### A general framework for pruning large neural models

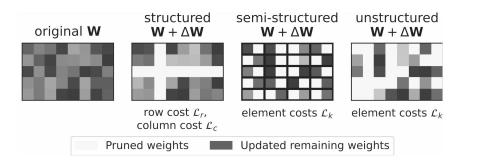
Tycho F.A. van der Ouderaa, Markus Nagel, Mart van Baalen, Yuri M. Asano, Tijmen Blankevoort

#### In ICLR 2024



# Pruning of large neural models

#### Any structure type



#### <u>Novelty</u>

- Uses gradient info. Removal cost and updates in terms of final loss.
- Modern Hessian approximations
- Scalable to LLMs
- First to achieve 20-30% structured (!) LLM pruning with performance loss.
- Also state-of-the-art results in unstructured and semi-structured pruning.

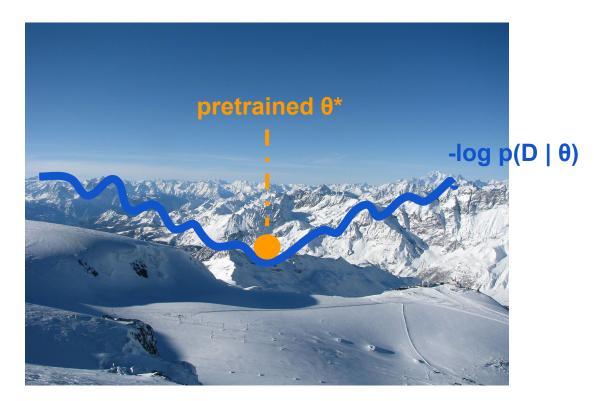
Growing interest in structured LLM pruning. Notably, concurrent work by ETH Zurich / Microsoft Research AI: Ashkboos, Saleh, et al. "Slicegpt: Compress large language models by deleting rows and columns." *(2024)* 

# A tale of pruning in the loss surface

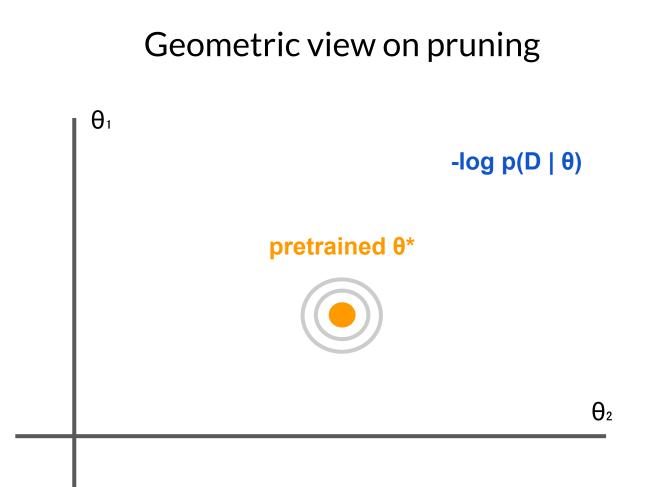


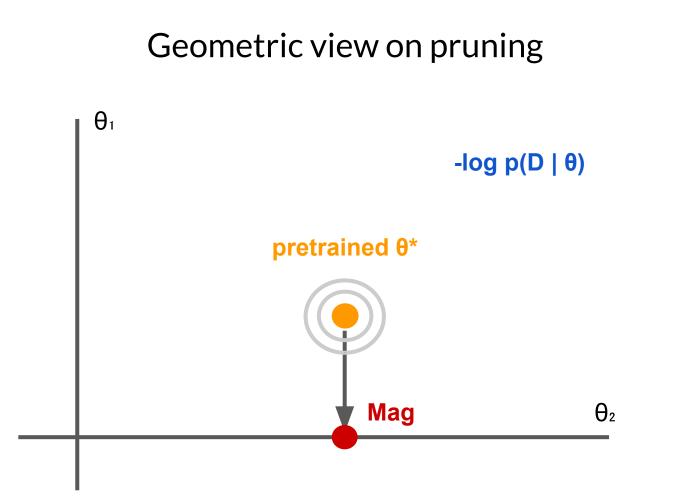
Alps view from Matterhorn Glacier Paradise. (source: Wikipedia)

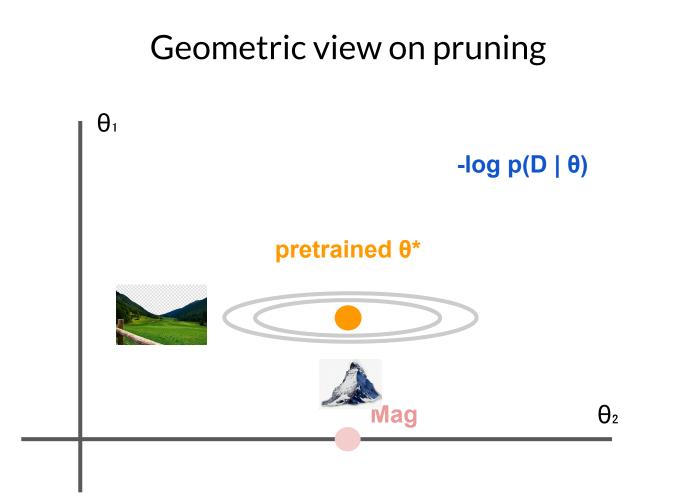
# A tale of pruning in the loss surface



Alps view from Matterhorn Glacier Paradise. (source: Wikipedia)

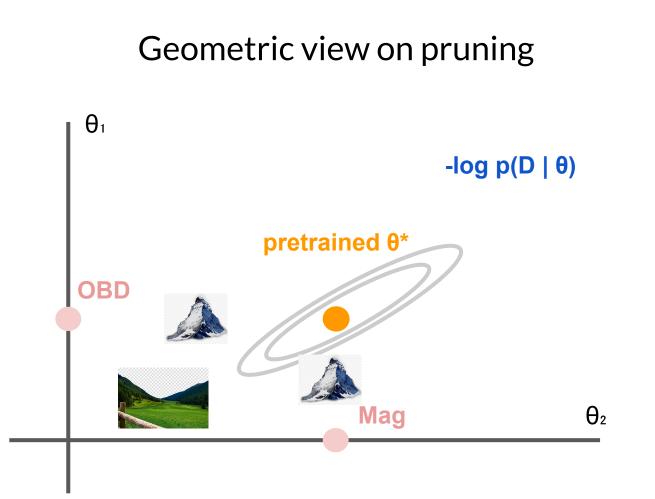


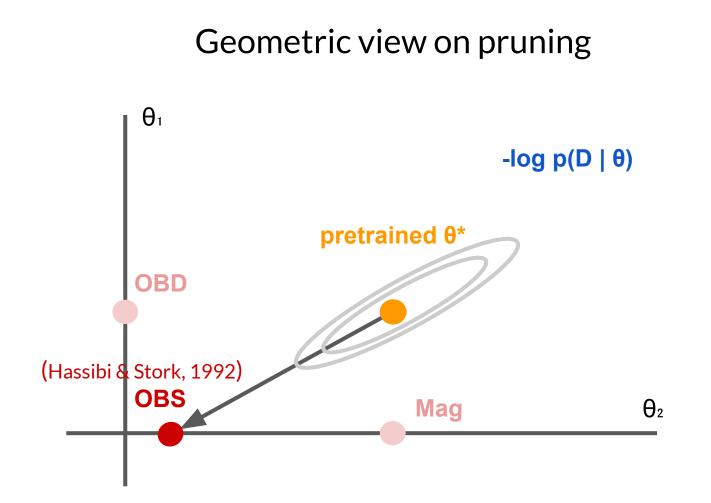




#### Geometric view on pruning





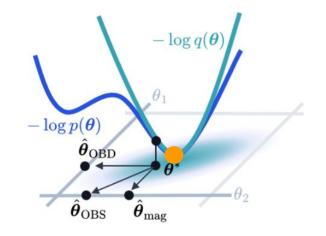


## **Closed-form constraint optimization**

Solve the following quadratic constraint optimization problem (OBS: Hassibi & Stork, 1992)

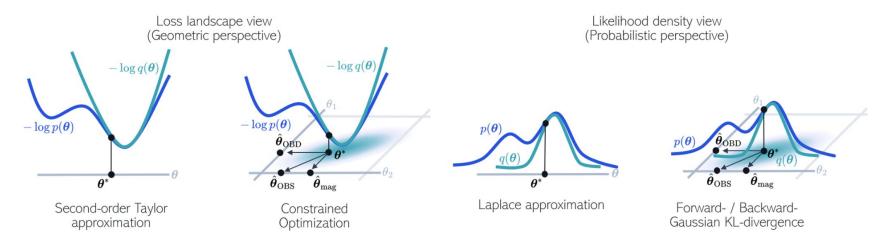
General solution (in LLM context: Kurtic et al. (2022))

$$egin{split} \mathcal{L} &= rac{1}{2} (oldsymbol{E}_K oldsymbol{ heta}^*)^T \left(oldsymbol{E}_K oldsymbol{F}^{-1} oldsymbol{E}_K oldsymbol{ heta}^{-1} oldsymbol{E}_K^T 
ight)^{-1} oldsymbol{E}_K oldsymbol{ heta} \ \Delta oldsymbol{ heta} &= -oldsymbol{F}^{-1} oldsymbol{E}_K^T \left(oldsymbol{E}_K oldsymbol{F}^{-1} oldsymbol{E}_K oldsymbol{ heta}^{-1} oldsymbol{E}_K^T 
ight)^{-1} oldsymbol{E}_K oldsymbol{ heta} \end{split}$$



# One slide on the probabilistic perspective...

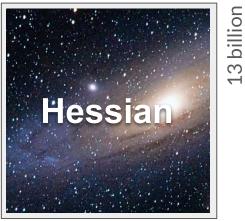
Actually loss is regularised:  $-\log p(D \mid \theta) + \log p(\theta)$  by a log prior. Prior variance plays critical role in implementation as `damping' term.



- We perform a Laplace approximation of the likelihood or posterior.
- Good pruning is all about correlations! Avoid the mean-field assumption.

# Curse of squaring a large number

The Hessian of a 13 billion parameter LLM contains 1.69 × 10^20 elements!



#### 13 billion

Waaaayyy to big...

Total # of correlations (13 billion)^2 = (13\*10^9)^2 = 1.69\*10^20 169 exabytes (comes after giga, tera, peta) Wayyy too big...

## Kronecker-factors



The Kronecker product  $\otimes$  operates on two matrices of arbitrary size and results in a block matrix.

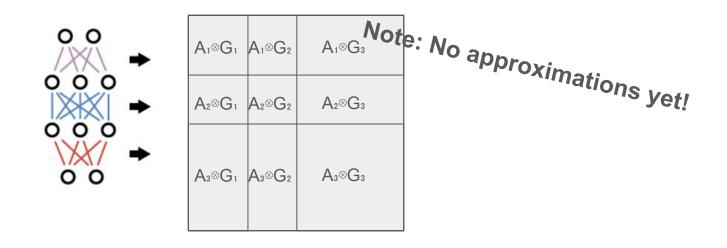
Nice way to write factorisations/decompositions for tensors.

Very natural operation, and broadcasted multiplication under a reshuffling:

(A.view(3, 1, 3, 1) \* B.view(1, 4, 1, 4)).view(12, 12)

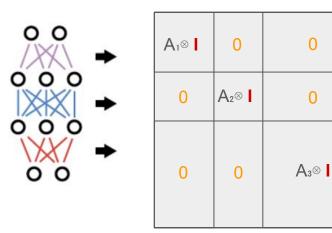
Often pops up in factorisations/decompositions of tensors. Keeps math clean.

The Hessian of a 13 billion parameter LLM contains 1.69e+20 elements!



# What often happens in prior work

Most pruning works ignore `layer-wise' interactions, BUT make it completely `local'.

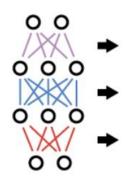


Very cheap.

X No gradient info.



Ignores final loss. (equivalent to summing local squared losses on output of each layer)



| A₁⊗G₁ | 0     | 0     |
|-------|-------|-------|
| 0     | A₂⊗G₂ | 0     |
| 0     | 0     | A₃⊗G₃ |

Interactions per layer R=C=1000 1000^4 bytes = 1TB Still too big...

Still quite big...

 $oldsymbol{F}_{l} = \sum_{n=1}^{N} \mathbb{E} \Big[ \underbrace{(oldsymbol{g}_{l,n}) \otimes (oldsymbol{a}_{l,n}oldsymbol{a}_{l,n})}_{RC imes RC} \Big]$ 



The Kronecker product  $\otimes$  operates on two matrices of arbitrary size and results in a block matrix.

Assume independent input and outputs (KFAC: Martens & Grosse,

$$\mathbb{E}[\underline{g_{l,n}g_{l,n}^{T} \otimes a_{l,n}a_{l,n}^{T}}] \approx \frac{\mathbb{E}[\underline{g_{l,n}g_{l,n}^{T}}]}{(\mathsf{R} \times \mathsf{R})} \otimes \frac{\mathbb{E}[a_{l,n}a_{l,n}^{T}]}{(\mathsf{C} \times \mathsf{C})}$$
Great!



Implementation using *hooks*:

During all fwd and bwd passes, maintain aggregates of activations (aa<sup>T</sup>) and gradients (gg<sup>T</sup>). Aggregates can be moved to ram, if needed.



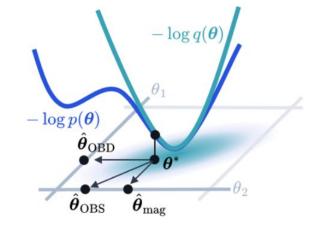
# Constraint optimization problem

Solve the following quadratic constraint optimization problem (OBS: Hassibi & Stork, 1992)

$$arg \min_{\Delta \theta} \frac{1}{2} \Delta \theta^T F \Delta \theta$$
  
s.t.  $e_k^T \Delta \theta + e_k^T \theta = 0, \forall k \in \mathcal{K}$ 

General solution (in LLM context: Kurtic et al. (2022))

$$\mathcal{L} = \frac{1}{2} (\boldsymbol{E}_{K} \boldsymbol{\theta}^{*})^{T} (\boldsymbol{E}_{K} \boldsymbol{F}^{-1} \boldsymbol{E}_{K}^{T})^{-1} \boldsymbol{E}_{K} \boldsymbol{\theta}$$
$$\Delta \boldsymbol{\theta} = -\boldsymbol{F}^{-1} \boldsymbol{E}_{K}^{T} (\boldsymbol{E}_{K} \boldsymbol{F}^{-1} \boldsymbol{E}_{K}^{T})^{-1} \boldsymbol{E}_{K} \boldsymbol{\theta}$$



Paper provides derivations for all structures {unstructured, semi-structured, structured} 20

# Algorithm outline for structured pruning

1. **Compute removal cost** for each row and column

$$\mathcal{L}_r = \frac{1}{2} \frac{\boldsymbol{\theta}_r^T \boldsymbol{A} \boldsymbol{\theta}_r}{[\boldsymbol{G}^{-1}]_{rr}}, \quad \mathcal{L}_c = \frac{1}{2} \frac{\boldsymbol{\theta}_c^T \boldsymbol{G} \boldsymbol{\theta}_c}{[\boldsymbol{A}^{-1}]_{cc}}$$

Scales not in #elements anymore, but only in #rows and #columns!

- 2. Global thresholding by sorting all costs and selecting op X% for removal
- 3. Update remaining weights using correlated weight updates

$$\Delta \boldsymbol{W} = -\overline{\boldsymbol{W}}(\boldsymbol{E}_{C'}\boldsymbol{A}^{-1}\boldsymbol{E}_{C'}^{T})^{-1}(\boldsymbol{A}^{-1}\boldsymbol{E}_{C'}^{T})$$
$$\Delta \boldsymbol{W} = -\overline{\boldsymbol{G}^{-1}\boldsymbol{E}_{R'}^{T}(\boldsymbol{E}_{R'}\boldsymbol{G}^{-1}\boldsymbol{E}_{R'}^{T})^{-1}\overline{\boldsymbol{W}}}$$

(among new results)

Can be efficiently implemented by indexing rows/cols.

4. Repeat for multiple shots

Scales not in #elements anymore, but only in #rows and #columns!

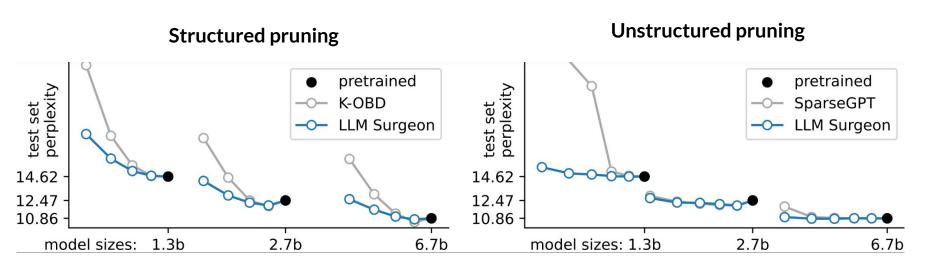
## Pseudo code

| Algorithm 1 LLM Surgeon (structured)                                                                    |                              |
|---------------------------------------------------------------------------------------------------------|------------------------------|
| <b>Input:</b> initial weights $\theta^0$ , target size $\alpha$ , and data $\mathcal{D}$                |                              |
| For shot $t$ in $[1, 2,, T]$                                                                            |                              |
| <b>Compute:</b> approximate curvature $G, A$ from data $\mathcal{D}$                                    | $\triangleright$ section 3.1 |
| <b>Compute:</b> costs per row/column $\mathcal{L}_r, \mathcal{L}_c$ from $G, A$                         | $\triangleright$ section 3.2 |
| <b>Compute:</b> threshold $\tau$ using $\mathcal{L}_r$ and $\mathcal{L}_c$ given target size $\alpha_t$ | $\triangleright$ section 3.3 |
| <b>Select:</b> rows and columns to remove $E_R$ , $E_C$ based on $\tau$                                 | $\triangleright$ section 3.3 |
| <b>Compute:</b> weight update $\Delta \theta^{t-1}$ based on $E_R, E_C$ and $G, A$                      | $\triangleright$ section 3.4 |
| Update: remaining weights $\theta^t \leftarrow \theta^{t-1} + \Delta \theta^{t-1}$                      | $\triangleright$ section 3.5 |
| <b>Optionally:</b> $\theta^t \leftarrow \text{low-rank update}(\theta^t)$                               | $\triangleright$ section 3.6 |
| <b>Output:</b> compressed weights $\hat{\theta} = \theta^T$                                             |                              |
|                                                                                                         |                              |

Optionally, can be interleaved with first-order LoRA corrections.

Useful trick: absorb in between to allow increase rank of sum of LoRA updates!

#### Results Interpolate model sizes



#### **Results** Quantitative benchmark

#### **Structured pruning results**

| Table 1: Structure | d compression of large | language models on | wikitext-2 data. |
|--------------------|------------------------|--------------------|------------------|
|                    |                        |                    |                  |

|                                                             |             | Test performance (PPL) |            |            |            |               |  |  |  |
|-------------------------------------------------------------|-------------|------------------------|------------|------------|------------|---------------|--|--|--|
| Method                                                      | Target size | OPT (125m)             | OPT (1.3b) | OPT (2.7b) | OPT (6.7b) | Llama-v2 (7b) |  |  |  |
| Baseline 100% 27.65                                         |             | 27.65                  | 14.62      | 12.47      | 10.86      | 5.12          |  |  |  |
| Magnitude90% $I \otimes I$ 80%70%                           |             | 767.2                  | 894.4      | 1229       | 3464       | 36746         |  |  |  |
|                                                             |             | 4685                   | (1278)     | 2788       | 16747      | 347960        |  |  |  |
|                                                             |             | 17970                  | (3098)     | 9255       | 17312      | 41373         |  |  |  |
| L-OBD                                                       | 90%         | 33.3                   | 20.76      | 17.69      | 27.20      | 14259         |  |  |  |
| $\operatorname{diag}(\boldsymbol{I}\otimes \boldsymbol{A})$ | 80%         | 94.14                  | 1392       | 3236       | 7570       | 15630         |  |  |  |
| multi shot                                                  | 70%         | 545.6                  | 2147       | 7233       | 7628       | 21386         |  |  |  |
| K-OBD                                                       | 90%         | 27.97                  | 14.68      | 11.96      | 10.53      | 5.48          |  |  |  |
| multi shot 70% 36                                           |             | 29.89                  | 15.63      | 12.47      | 11.28      | 9.14          |  |  |  |
|                                                             |             | 36.54                  | 18.29      | 14.53      | 13.03      | 15.43         |  |  |  |
|                                                             | 60%         | 47.54                  | 24.65      | 18.09      | 16.21      | 28.03         |  |  |  |
|                                                             | 50%         | 75.95                  | 37.68      | 26.68      | 25.54      | 46.64         |  |  |  |
| LLM Surgeon (ours)                                          | 90%         | 28.29                  | 14.73      | 12.00      | 10.82      | 5.43          |  |  |  |
| $oldsymbol{G}\otimes oldsymbol{A}$                          | 80%         | 29.37                  | 15.27      | 12.37      | 11.22      | 7.29          |  |  |  |
| within row/col cor. $\Delta$                                | 70%         | 32.46                  | 16.60      | 13.16      | 11.83      | 10.85         |  |  |  |
|                                                             | 60%         | 39.82                  | 19.40      | 14.79      | 12.94      | 16.67         |  |  |  |
|                                                             | 50%         | 51.48                  | 23.81      | 18.01      | 15.38      | 25.62         |  |  |  |
| LLM Surgeon (ours)                                          | 90%         | 28.01                  | 14.70      | 12.02      | 10.77      | 5.25          |  |  |  |
| $oldsymbol{G}\otimesoldsymbol{A}$                           | 80%         | 28.73                  | 15.12      | 12.27      | 11.02      | 6.18          |  |  |  |
| full cor. $\Delta$                                          | 70%         | 31.82                  | 16.24      | 12.92      | 11.64      | 7.83          |  |  |  |
|                                                             | 60%         | 38.47                  | 18.45      | 14.23      | 12.58      | 10.39         |  |  |  |
|                                                             | 50%         | 49.78                  | 22.95      | 17.15      | 14.90      | 15.38         |  |  |  |

#### **Unstructured pruning results**

|                     | Target | Test performance (PPL) |            |            |            |               |  |  |  |
|---------------------|--------|------------------------|------------|------------|------------|---------------|--|--|--|
| Method              | size   | OPT (125m)             | OPT (1.3b) | OPT (2.7b) | OPT (6.7b) | Llama-v2 (7b) |  |  |  |
| Baseline            | 100%   | 27.65                  | 14.62      | 12.47      | 10.86      | 5.12          |  |  |  |
| Magnitude           | 90%    | 27.62                  | 14.69      | 12.60      | 10.88      | 5.18          |  |  |  |
| $I \otimes I$       | 80%    | 28.53                  | 15.68      | 13.18      | 11.26      | 5.37          |  |  |  |
|                     | 70%    | 52.88                  | 140.2      | 15.22      | 12.22      | 6.03          |  |  |  |
| L-OBD               | 90%    | 29.70                  | 16.24      | 14.44      | 13.43      | 6.09          |  |  |  |
| $diag(I \otimes A)$ | 80%    | 32.18                  | 21.92      | 23.35      | 39.85      | 116.2         |  |  |  |
| single shot         | 70%    | 49.08                  | 204.7      | 274.8      | 810.4      | 6549          |  |  |  |
| K-OBD               | 90%    | 27.64                  | 14.62      | 12.09      | 36.89      | 5.13          |  |  |  |
| $G \otimes A$       | 80%    | 27.62                  | 14.37      | 130220     | 39928      | 5.19          |  |  |  |
| single shot         | 70%    | 27.92                  | 220.1      | 23097      | 19506      | 5.60          |  |  |  |
|                     | 60%    | 29.24                  | 13783      | 10331      | 33896      | 9.20          |  |  |  |
|                     | 50%    | 34.43                  | 7311       | 10495      | 91506      | 118.6         |  |  |  |
| SparseGPT           | 90%    | 27.93                  | 14.69      | 12.00      | 10.86      | 5.49          |  |  |  |
| $\hat{I} \otimes A$ | 80%    | 28.18                  | 15.07      | 12.05      | 10.86      | 5.58          |  |  |  |
|                     | 70%    | 28.93                  | 22.77      | 12.17      | 10.89      | 5.71          |  |  |  |
|                     | 60%    | 30.20                  | 25.07      | 12.37      | 10.98      | 5.94          |  |  |  |
|                     | 50%    | 33.17                  | 26.77      | 12.88      | 11.92      | 6.51          |  |  |  |
| LLM Surgeon (ours)  | 90%    | 27.69                  | 14.62      | 12.01      | 10.86      | 5.13          |  |  |  |
| $G_1 \otimes A_1$   | 80%    | 27.83                  | 14.66      | 12.14      | 10.87      | 5.20          |  |  |  |
| full cor. $\Delta$  | 70%    | 28.35                  | 14.81      | 12.25      | 10.82      | 5.36          |  |  |  |
| multi shot          | 60%    | 28.98                  | 14.91      | 12.28      | 10.83      | 5.66          |  |  |  |
|                     | 50%    | 30.30                  | 15.47      | 12.68      | 10.97      | 6.08          |  |  |  |

#### Semi-structured (2:4) pruning results

|                    |                                    | Target Test performance (PPL) |            |            |            |            |  |  |
|--------------------|------------------------------------|-------------------------------|------------|------------|------------|------------|--|--|
| Method             | Fpprox                             | size                          | OPT (125m) | OPT (1.3b) | OPT (2.7b) | OPT (6.7b) |  |  |
| Baseline           |                                    | 100%                          | 27.65      | 14.62      | 12.47      | 10.86      |  |  |
| Magnitude          | $I \otimes I$                      | 50%                           | 342.04     | 379.57     | 1106.01    | 187.29     |  |  |
| L-OBD              | $diag(I \otimes A)$                | 50%                           | 87.26      | 44.92      | 41.40      | 27.36      |  |  |
| K-OBD              | $diag(G \otimes A)$                | 50%                           | 68.74      | 27.22      | 20.23      | 15.55      |  |  |
| SparseGPT          | $I \otimes A$                      | 50%                           | 45.51      | 29.44      | 14.92      | 13.01      |  |  |
| LLM Surgeon (ours) | $oldsymbol{G}\otimes oldsymbol{A}$ | 50%                           | 44.64      | 25.10      | 14.64      | 12.10      |  |  |

Similar findings for performance on downstream tasks!

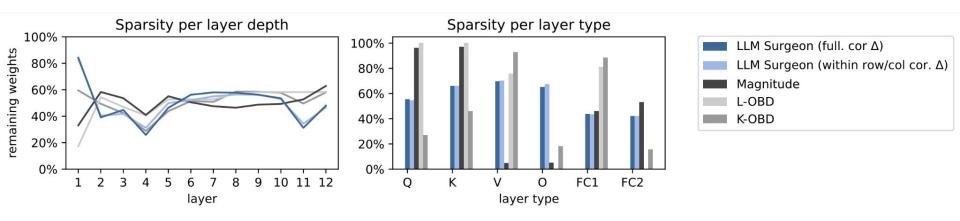
#### **Results** Task-specific compression

Can be used to project existing pretrained models to tailored smaller model.

|   |            | e           | mas   | k equiv | alence | (%)  |      |      |      |
|---|------------|-------------|-------|---------|--------|------|------|------|------|
|   | target     | EN FR DE IT |       |         |        | EN   | FR   | DE   | IT   |
| _ | Pretrained | 27.66       | 22.54 | 24.32   | 27.66  |      |      |      |      |
| - | EN         | 47.46       | 172.9 | 181.1   | 169.1  | 1.00 | 0.74 | 0.70 | 0.72 |
|   | FR         | 113.4       | 28.44 | 35.02   | 34.90  | 0.74 | 1.00 | 0.87 | 0.90 |
|   | DE         | 142.1       | 35.15 | 27.49   | 38.49  | 0.70 | 0.87 | 1.00 | 0.87 |
|   | IT         | 123.7       | 31.85 | 33.78   | 30.58  | 0.72 | 0.90 | 0.87 | 1.00 |

# Results

#### Analysing sparsification



#### THE LLM SURGEON

Tycho F.A. van der Ouderaa<sup>1\*</sup>, Markus Nagel<sup>2</sup>, Mart van Baalen<sup>2</sup>, Yuki M. Asano<sup>3</sup>, Tijmen Blankevoort<sup>2</sup> <sup>1</sup>Imperial College London, <sup>2</sup>Qualcomm AI Research<sup>†</sup>, <sup>3</sup>QUVA Lab, University of Amsterdam

> Tycho van der Ouderaa Twitter/X: tychovdo Email: tychovdo@gmail.com Web: tychovdo.ai

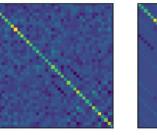






#### Beyond independent inputs and outputs Nearest Kronecker product with Kronecker power iteration

Algorithm 4 Kronecker power method. Finds  $\widetilde{G}, \widetilde{A}$  nearest Kronecker product  $||F - \widetilde{G} \otimes \widetilde{A}||_{F}$ . **Input:** Initialise  $\tilde{g}^0 = 1$ ,  $\tilde{a}^0 = 1$  (or using estimates of previous shot). **Input:** Set iterations I (or I=1 if using estimates from previous shot) Output:  $\tilde{G}, \tilde{A}$ for iteration i in  $[1, 2, \ldots, I]$  do **Compute:**  $\widetilde{g}^{i} = \frac{\mathcal{R}(\widetilde{F})\widetilde{a}^{i-1}}{||\mathcal{R}(\widetilde{F})\widetilde{a}^{i-1}||_{\alpha}}$ , with  $\mathcal{R}(\widetilde{F})\widetilde{a}^{i-1} = \frac{1}{N}\sum_{n=1}^{N}a_{n}^{T}\widetilde{A}^{i-1}a_{n}\operatorname{vec}(g_{n}g_{n}^{T})$ **Compute:**  $\widetilde{a}^i = \frac{\mathcal{R}(\widetilde{F})^T \widetilde{g}^i}{||\mathcal{R}(\widetilde{F})^T \widetilde{a}^i||_2}$ , with  $\mathcal{R}(\widetilde{F})^T \widetilde{g}^i = \frac{1}{N} \sum_{n=1}^N g_n^T \widetilde{G}^i g_n \operatorname{vec}(a_n a_n^T)$ Compute:  $\sigma^i = ||\widetilde{a}^i||_2$ end for **Return:**  $\widetilde{G} = \sqrt{\sigma^i} \operatorname{mat}(\widetilde{g}), \widetilde{A} = \sqrt{\sigma^i} \operatorname{mat}(\widetilde{a}).$ 

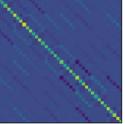


True Fisher

Classic KFAC (IAD)

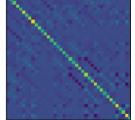
rmse: 0.13 rmse diag: 0.19

Nearest KFAC  $R_{\kappa} = 1$ 



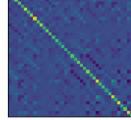
rmse: 0.12 rmse diag: 0.15

Nearest KFAC  $R_{\kappa} = 2$ 



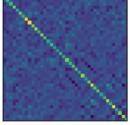
rmse: 0.11 rmse diag: 0.15





rmse diag: 0.14

Nearest KFAC  $R_{\kappa} = 9$ 



rmse: 0.04 rmse diag: 0.14